New SS4000M Force Transducer
For Micro-Rover Mobility System
Published on July 6, 2012 at
9:39 AM
Sherborne Sensors, a global leader in the
design, development and manufacture of sensors for military, aerospace and
industrial applications, has helped Canada’s Carleton University complete
development of an innovative mobility system for a prototype micro-rover that
in future may perform exploratory research missions on the Moon and Mars.
Sherborne Sensors’ SS4000M miniature force transducers are
situated over each of the wheel hubs and are integrated into the mechanical
system of the chassis to provide critical data that will improve traction and
combat slippage when the micro-rover is traversing a Martian surface.
“There is a high possibility of a rover getting stuck on the
Martian surface because the soil is fine grained – slippage occurs while
driving the wheels without making any forward motion resulting in significant
power drain,” says Alex Ellery, professor of mechanical and aerospace
engineering at Carleton University and Canada Research Chair in Space, Robotics
and Space Technology. “By putting a load cell above each wheel station, we are
able to measure the vehicle’s tractive capability (friction) continuously as it
drives across the surface and from that, using sophisticated modeling software,
we can throttle the power to reduce the amount of slippage.”
Named ‘Kapvik’ after the Canadian Wolverine, the micro-rover is
one of the first rover designs to incorporate force sensors above the wheel
hubs to sense the normal load exerted on each wheel and is being developed
under a $1.8-million (CAD) contract commissioned by the Canadian Space Agency (CSA). “The
chassis and frame for Kapvik was built ‘from the ground up’ using a
rocker-bogie design, which is proven for negotiating obstacles of up to 15 cm in
height and where speed is not a concern (Kapvik’s top speed is 80 meters per
hour),”
states Dr Ala’ Qadi, the project manager at Carleton University.
“However, we recognized that it would need to obtain sensor
readings from over the chassis and combine these with the actual load power
ratings in order to enable dynamic traction control.”
Kapvik’s modular architecture allows for optimal reconfiguration
for Moon and Mars exploration and the micro-rover prototype has been submitted
to the CSA for further terrestrial field tests that will reproduce key
conditions of space missions. The CSA stipulated that all components employed
by Kapvik be ‘flight representative’, which ensures a path to flight
qualification should a mission be confirmed.
Sherborne Sensors’ SS4000M miniature force transducers were selected for their small size and wide range, as well as the fact the company has experience in working on space qualified systems. Sherborne Sensors was recently awarded AS9100:2009 Rev C, the international standard that specifies requirements for a quality management system for Aviation, Space and Defense Organizations.